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ABSTRACT

The design and analysis of communication systems typically rely
on the development of mathematical models that describe the under-
lying communication channel. However, in some systems, such as
molecular communication systems where chemical signals are used
for transfer of information, the underlying channel models are un-
known. In these scenarios, a completely new approach to design and
analysis is required. In this work, we focus on one important aspect
of communication systems, the detection algorithms, and demon-
strate that by using tools from deep learning, it is possible to train
detectors that perform well without any knowledge of the underly-
ing channel models. We propose a technique we call sliding bidi-
rectional recurrent neural network (SBRNN) for real-time sequence
detection. We evaluate this algorithm using experimental data that is
collected by a chemical communication platform, where the channel
model is unknown and difficult to model analytically. We show that
deep learning algorithms perform significantly better than a detec-
tor proposed in previous works, and the SBRNN outperforms other
techniques considered in this work.

Index Terms— deep learning, sequence detection, communica-
tion systems, molecular communication

1. INTRODUCTION

The design and analysis of communication systems has relied on
developing mathematical models that describe signal transmission,
signal propagation, receiver noise, and many other components
of the system that affect the end-to-end signal transmission. Par-
ticularly, most communication systems today lend themselves to
tractable channel models based on a simplification of Maxwell’s
electromagnetic (EM) equations. However, there are cases where
this does not hold, either because the EM signal propagation is
very complicated and/or poorly understood, or because the signal is
not an EM signal and good models for its propagation don’t exist.
Some examples of the latter includes underwater communication
using acoustic signals [1], and a new technique called molecular
communication, which relies on chemical signals to interconnect
tiny devices with sub-millimeter dimensions in environments such
as inside the human body [2, 3, 4, 5]. In these scenarios, a new
approach to design and engineer these systems that does not require
analytical channel models is required.

Motivated by the recent success of deep learning in speech and
image processing, where modeling can be difficult, we consider us-
ing deep learning in design and analysis of communication systems
[6, 7, 8]. Some examples of machine learning tools applied to design
problems in communication systems include multiuser detection in
code-division multiple-access (CDMA) systems [9, 10, 11, 12], de-
coding of linear codes [13], design of new modulation and demodu-
lation schemes [14], and estimating channel model parameters [15].
Most previous works have used machine learning to improve one
component of the communication system based on the knowledge of
the underlying channel models.
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Our approach is different from these works since we assume
that the mathematical models for the communication channel are
completely unknown. Particularly, we focus on one of the impor-
tant modules of any communication system, the detection algorithm,
where the transmitted signal is estimated from a noisy and corrupted
version that is observed at the receiver. We demonstrate that, using
known deep learning architectures such as a recurrent neural net-
work (RNN), it is possible to train a detector without any knowledge
of the underlying system models. Particularly, we use an experi-
mental platform for molecular communication presented in [16] for
generating data for training and testing. We also propose a real-
time deep learning detector, which we call the sliding bidirectional
RNN (SBRNN) detector, that detects the symbols in an incoming
data stream using a dynamic programming approach. This technique
could be extended to any type of real-time estimation of sequences
in data streams. We demonstrate our SBRNN performs better than
other deep learning detectors considered in this work, and signifi-
cantly better than a detector used in [17, 18].

2. PROBLEM STATEMENT

In a digital communication system data is converted into a sequence
of transmission symbols. Let X = {s1, s2, · · · , sm} be a finite set
of all transmission symbols, and xk 2 X be the k

th transmission
symbol. The transmission symbols are converted into transmission
signals using different modulation techniques, and the signal then
propagates in the environment until it arrives at the receiver. The
signal that is observed at the destination is a noisy and corrupted
version due to the perturbations that are introduced as part of trans-
mission, propagation, and reception processes. Let the random vec-
tor yk of length ` be the observed signal at the destination during the
k

th transmission. Note that the observed signal yk is typically a vec-
tor while the transmission symbol is typically a scalar. A detection
algorithm is then used to estimate the transmission symbols from
the observed signal at the receiver. Let x̂k be the symbol estimate
for the k

th transmission. After detection, the estimated transmission
symbols are passed to a channel decoder to correct some of the errors
in detection.

Typically, to design the detection algorithm, mathematical chan-
nel models are required. These models describe the relation between
the transmitted symbols and the received signal through the proba-
bilistic model:

P (y1,y2, · · · | x1, x2, · · · ;⇥), (1)

where ⇥ are the model parameters or the channel state information
(CSI). The detection can be performed through symbol-by-symbol
detection where x̂k is estimated from yk, or using sequence detec-
tion where the sequence x̂k, x̂k�1, · · · , x̂1 is estimated from the se-
quence yk,yk�1, · · · ,y1.

An important open problem is the best approach to designing de-
tection algorithms when the underlying channel models are complex
such that they cannot provide any insight, or are partly or completely
unknown. There are also scenarios where even when the channel
models are known, the optimal detection algorithm or even heuris-
tic algorithms can be computationally complex. For example, the



complexity of the Viterbi algorithm used in communication chan-
nels with memory increases exponentially with memory length, and
quickly becomes infeasible for systems with long memory.

Motivated by the recent success of deep learning in speech and
image processing, where the underlying models are complex [19,
6], we propose a data driven approach for decoding based on deep
learning.

3. DETECTION USING DEEP LEARNING

Estimating the transmitted symbol from the received signals yk can
be performed through supervised learning. Particularly, let m = |X |
be the total number of symbols, and let pk be the one-hot represen-
tation of the symbol transmitted during the k

th transmission. There-
fore, the element corresponding to the symbol that is transmitted is
1, and all other elements of pk are zero. Note that this is also the
PMF of the transmitted symbol during the k

th transmission where at
the transmitter, with probability 1, one of the symbols is transmitted.
Also note that the length of the vector pk is different from the length
of the vector of the observation signal yk at the destination.

The detection algorithm goes through two phases. In the first
phase, known sequences of transmission symbols are transmitted
repeatedly and received by the system to create a set of training
data. The data can be generated using mathematical models, sim-
ulations, experimental measurements, or field measurements. Let
PK = [p1,p2, · · · ,pK ] be a sequence of K consecutively trans-
mitted symbols, and YK = [y1,y2, · · · ,yK ] the corresponding
sequence of observed signals at the destination. Then, the training
dataset is represented by

{(P(1)
K1

,Y(1)
K1

), (P(2)
K2

,Y(2)
K2

), · · · , (P(n)
Kn

,Y(n)
Kn

)}, (2)

which consists of n samples, and i

th sample has Ki consecutive
transmissions.

This dataset is then used to train a deep learning classifier that
classifies the received signal yk as one of the transmission symbols
in X . The input to the deep learning network can be the raw observed
signals yk, or a set of features rk extracted from the received signals.
The output of the deep learning network are the vectors p̂k, which
are the estimated PMFs that the k

th transmission symbol belongs to
each of the m possible symbols. Note that this output is also useful
for soft decision channel decoders (i.e., decoders where the decoder
input are PMFs), which are typically the next module after detection
in communication systems. If channel coding is not used, the symbol
with the highest mass point in p̂k is chosen as the estimated symbol
for the k

th transmission.
During the training, an optimization algorithm such as stochas-

tic gradient descent is used to minimize the loss between the actual
PMF pk, and the estimated PMF p̂k [7]. Particularly, the cross-
entropy loss function can be used for this optimization [7]. Note
that minimizing this loss function is equivalent to minimizing the
Kullback-Leibler divergence between the true PMF and the one esti-
mated based on the neural network. It is also equivalent to maximiz-
ing the log-likelihood of the correctly transmitted symbol. There-
fore, deep learning can be a powerful tool for designing detection
algorithms for communication systems, especially when the under-
lying channel models are unknown. We now discuss how several
well-known NN architectures can be used for sequence detection.

3.1. Sequence Detection

Sequence detection can be performed using recurrent neural net-
works (RNN) [6, 7], which are well established for sequence estima-
tion in different problems such as neural machine translation [20],
speech recognition [19], or bioinformatics [21]. In particular, in this
work we use long short-term memory (LSTM) networks [22]. One
of the main benefits of this detector is that after training, similar to
a symbol-by-symbol detector, it can perform detection on any data

!1 !# !$ !% !& !' !( !) !*

BRNN

Stream of 
Observed Signals 

…

BRNN BRNN

BRNN

BRNN

BRNN

Block Detector

Sliding BRNN
Detector

Fig. 1: The sliding BRNN detector.

stream as it arrives at the receiver. Note that in this configuration the
observed signal during the j

th transmission slot, yj where j > k,
may carry information about the kth symbol xk due to the ISI. How-
ever, since RNNs are feed-forward only, during the estimation of x̂k,
the observation signal yj is not considered.

One way to overcome this limitation is by using bidirectional
RNNs (BRNNs) [23]. Particularly, we use a bidirectional LSTM
(BLSTM) network [24] in this work, where the sequence of received
signals are once fed in the forward direction into one LSTM cell, and
once fed in backwards into another LSTM cell. The two outputs may
be passed to more bidirectional layers. This BLSTM architecture
ensures that in the estimation of a symbol, future signal observations
are taken into account. The main limitation is that as signals from a
data stream arrive at the destination, the block length increases and
the whole block needs to be detected altogether again for each new
data symbol that arrives at the destination. Therefore, this quickly
becomes infeasible for long data streams. In the next section we
present a new technique to solve this issue.

3.2. Sliding BRNN Detector

First, we fix the length of the BRNN. Ideally, the length must be
the same size as the memory length of the channel. However, if this
is not known in advance, the BRNN length can be treated as a hy-
per parameter to be tuned during training. Let L be the length of
the BRNN. Then during training, all blocks of L consecutive trans-
missions are used for training. After training, the simplest scheme
would be to detect the stream of incoming data in blocks of length L

as shown in the top portion of Figure 1. The main drawback here is
that the symbols at the end of each block may affect the symbols in
the next block and this relation is not captured in this scheme. An-
other issue is that L consecutive symbols must be received before
detection can be preformed.

To overcome these limitations, inspired by some of the tech-
niques used in speech recognition [25], we propose a scheme we
call the sliding BRNN (SBRNN) detector. The first L symbols are
detected using the BRNN. Then as each new symbol arrives at the
destination, the position of the BRNN is slided ahead by one sym-
bol. Let the set Jk = {j | j  k ^ j + L > k} be the set of all
valid staring positions for a BRNN detector of length L, such that
the detector overlaps with the k

th symbol. For example, if L = 3
and k = 4, then j = 1 is not in the set Jk since the BRNN detector
overlaps with symbol positions 1, 2, 3 and not the symbol position
4. Let p̂(j)

k be the estimated PMF for the k

th symbol, when the start
of the sliding BRNN is on j 2 Jk. The final PMF corresponding to
the kth symbol is given by averaging the estimated PMFs for each of
the relevant windows:

p̂k =
1

|Jk|
X

j2Jk

p̂(j)
k . (3)

One of the main benefits of this approach is that after the first L
symbols are received and detected, as the signal corresponding to
a new symbol arrives at the destination, the detector immediately
estimates that symbol. The detector also updates its estimate for the



previous L � 1 symbols dynamically. Therefore, this algorithm is
similar to a dynamic programming algorithm.

The bottom portion of Figure 1 illustrates the sliding BRNN de-
tector. In this example, after the first 3 symbols arrive, the PMF
for the first three symbols, i 2 {1, 2, 3}, is given by p̂i = p̂(1)

i .
When the 4th symbol arrives, the estimate of the first symbol is un-
changed, but for i 2 {2, 3}, the second and third symbol estimates
are updated as p̂i = 1

2 (p̂
(1)
i + p̂(2)

i ), and the 4th symbol is esti-
mated by p̂4 = p̂(2)

4 . Note that although in this paper we assume
that the weights of all p̂(j)

k are 1
|Jk|

, the algorithm can use differ-
ent weights. Moreover, the complexity of SBRNN increases linearly
with the length of the BRNN.

To evaluate the performance of all these deep learning detec-
tion algorithms, we use an experimental platform to collect data for
training and testing the algorithms.

4. EXPERIMENTAL SETUP

The in-vessel molecular communication experimental platform, pre-
sented in [16], is used for evaluation. The platform uses peristaltic
pumps to inject different chemicals into a main fluid flow in small
silicon tubes. Multiple tubes with different diameters can be net-
worked in branches to replicate a more complex environment such as
the cardiovascular system in the body or complex networks of pipes
in industrial complexes and city infrastructures. In our platform, the
main fluid flow is water and the transmitter used acids (vinegar) and
bases (window cleaning solution) to encode information on the pH
level. We use these particular chemicals since they are easily avail-
able and inexpensive. However, the results can be extended to blood
as the main flow, and proteins and enzymes as the chemicals that are
released by the transmitter.

4.1. System Model

The field of molecular communication is relatively new, and thus,
the models that have been developed are not validated experimen-
tally yet. In fact, there are no standardized models for these systems
and most previous work have used the diffusion equation to model
the chemical propagation from the sender to the destination [4, 5].
However, these works consider only a single chemical species in the
environment.

In many molecular systems multiple chemical species are
present, and therefore, chemical interactions will be an integral
part of the system. In fact in a closed system, using multiple types
of reactive chemicals can be beneficial since transmitting a single
chemical repeatedly will saturate/contaminate the environment and
degrades the system performance. That is the motivation behind
using multiple reactive chemicals such as acids and bases for trans-
mission. When chemical reactions are present in the system, the
average behavior of signal propagation can be represented by a
system of PDEs known as reaction-diffusion equations, which are
difficult to solve analytically. For our acid-base platform, the system
of PDEs are given by

@CH

@t

= DHr2
CH �r.(vCH)� kfCHCOH + kr (4)

@COH

@t

= DOHr2
COH �r.(vCOH)� kfCHCOH + kr, (5)

where CH and COH are the concentration of acid and base, respec-
tively, DH and DOH are the diffusion coefficient of the acid and
base, and kf and kr are the reaction rates of the system. This sys-
tem of PDE is extremely difficult to solve, and we have not been
able to find any approximate solution for it. Note that even if a
solution was obtained, it only models the average behavior of the
signal propagation and does not model the stochastic nature of the
transport. Moreover, models for the perturbations introduced by the
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Fig. 2: Sample received pH signal.

Fig. 3: Experimental data for rate of change d for B = 9.

transmission and reception processes are also required. Since all of
these problems makes a traditional model based approach to system
design challenging, a new data driven approach using deep learning
would be a suitable alternative.

4.2. Detection

In the platform, time-slotted communication is employed where the
transmitter modulates information on acid and base signals by inject-
ing these chemicals into the channel during each symbol duration.
We use a binary modulation in this work where the 0-bit is transmit-
ted by pumping acid into the environment for 30 ms at the beginning
of the symbol interval, and the 1-bit is represented by pumping base
into the environment for 30 ms at the beginning of the symbol in-
terval. The symbol interval consists of this 30 ms injection interval
followed by a period of silence, which can also be considered as a
guard band between symbols. In particular, four different silence
durations (guard bands) of 220 ms, 304 ms, 350 ms, and 470 ms are
used in this work to represent bit rates of 4, 3, 2.6, and 2 bps.

To synchronize the transmitter and the receiver, every message
sequence starts with one initial injection of acid into the environ-
ment for 100 ms followed by 900 ms of silence. The receiver then
detects the starting point of this pulse and uses it to synchronize with
the transmitter. Figure 2 shows the received pH signal for the trans-
mission sequence “110011010001001”. The start of the initial acid
pulse detected by the receiver is shown using the red line. This de-
tected time is used for synchronization and all the subsequent symbol
intervals are shown by the green dashed and dotted lines. The dashed
lines are used to indicate a 1-bit transmission and dotted lines to in-
dicate a 0-bit.

Although it is difficult to obtain analytical models for multi-
chemical communication systems as explained in the previous sec-
tion, it is expected that when an acid pulse is transmitted, the pH
should drop, and when a base pulse is injected into the environment,
the pH should increase. Therefore, one approach to detection is to
use the rate of change of pH to detect the symbols. Note that rate of
change of concentration is used in previous experimental demonstra-
tions of chemical communication [17, 18], and because there were



no models that matched our experimental data, it is the only tech-
nique which we can compare our deep learning detectors against.

To remove the noise from the raw pH signal, we divide the sym-
bol interval (the time between green lines in Figure 2) into a number
of equal subintervals or bins. Then the pH values inside each bin are
averaged to represent the pH value for the corresponding bin. Let
B be the number of bins, and b = [b0, b1, · · · , bB�1] the corre-
sponding values of each bin. The difference between values of these
bins d = [d0, d1, · · · , dB�2], where di�1 = bi � bi�1, are used as
a baseline detection algorithm. This algorithm has two parameters:
the number of bins B, and the index � that is used for detection. If
d�  0, acid transmission and hence the 0-bit is detected, and if
d� > 0, the 1-bit is detected. Figure 3 shows the d values of some
sample experimental data for B = 9. In the plot, the 1-bit symbols
are shown in blue and the 0-bit in red. From the figure it is evident
that detecting the bits is challenging due to chemical interactions.

5. RESULTS
We use our experimental platform to collect measurement data and
create the dataset that is used for training and testing the detection
algorithms. Particularly, as explained in the previous section, four
symbol durations of 250 ms, 334 ms, 380 ms and 500 ms are consid-
ered which results in data rates ranging from 2 to 4 bits per second
(bps). For each symbol interval, random bit sequences of length 120
are transmitted 100 times, where each of the 100 transmissions are
separated in times. Since we assume no channel coding is used,
the bits are iid and equiprobable. This results in 12k bits per symbol
duration that is used for training and testing. From the data, 84 trans-
missions per symbol duration (10,080 bits) are used for training and
16 transmissions are used for testing (1,920 bits). Therefore, the total
number of training bits are 40,320, and the total number of bits used
for testing is 7,680. Although the dataset is not large because col-
lecting experimental measurements is laborious, training with larger
datasets is demonstrated in the extension of this work [26].

We start by considering the baseline detection using the rate of
change of the pH. We use the training data to find the best detection
parameters B and �, and the test data for evaluating the performance.
Besides this algorithm we consider different deep learning detectors.
For all training, the Adam optimization algorithm [27] is used with
the learning rate 10�3. Unless specified otherwise the number of
epoch used during training is 200 and the batch size is 10. All the
hyper parameters are tuned using grid search.

We use two symbol-by-symbol detectors based on deep learning.
The first detector uses three fully connected layers with 80 hidden
nodes and a final softmax layer for detection. Each fully connected
layer uses the rectified linear unit (ReLU) activation function. The
input to the network are a set of features extracted from the received
signal, which are chosen based on performance and the character-
istics of the physical channel. The input includes: b1 and bB , i.e.,
the pH level in the first and the last bins, d, i.e., the vector of dif-
ferences of consecutive bins, and a number that indicates the symbol
duration. Here, we refer to this network as Base-Net. A second
symbol-by-symbol detector uses 1-dimensional CNNs. Particularly,
the best network architecture that we found has the following layers.
1) 16 filters of length 2 with ReLU activation; 2) 16 filters of length
4 with ReLU activation; 3) max pooling layer with pool size 2; 4) 16
filters of length 6 with ReLU activation; 5) 16 filters of length 8 with
ReLU activation; 6) max pooling layer with pool size 2; 7) flatten
and a softmax layer. The stride size for the filters is 1 in all layers.
The input to this network is the vector of pH values corresponding
to each bin b. We refer to this network as CNN-Net.

For the sequence detection, we use three networks, two based
on RNNs and one based on the SBRNN. The first network has 3
LSTM layers and a final softmax layer, where the length of the out-
put of each LSTM layer is 40. Two different inputs are used with this
network. In the first, the input is the same set of features as the Base-
Net above. We refer to this network as LSTM3-Net. In the second,
the input is the pretrained CNN-Net described above without the top
softmax layer. In this network, the CNN-Net chooses the features

Table 1: Bit Error Rate Performance
Symb. Dur. 250 ms 334 ms 380 ms 500 ms

Baseline 0.1297 0.0755 0.0797 0.0516
Base-Net 0.1057 0.0245 0.0380 0.0115
CNN-Net 0.1068 0.0750 0.0589 0.0063

CNN-LSTM3-Net120 0.0677 0.0271 0.0026 0.0021
LSTM3-Net120 0.0333 0.0417 0.0083 0.0005

SBLSTM3-Net10 0.0406 0.0141 0.0005 0.0000

directly from the pH levels of the bins. We refer to this network as
CNN-LSTM3-Net. Finally, we consider three layers of bidirectional
LSTM cells, where each cell’s output length is 40, and a final soft-
max layer. The input to this network are the same set of features used
for Base-Net and the LSTM3-Net. When this network is used, dur-
ing testing we use the SBRNN algorithm. We refer to this network
as SBLSTM3-Net. For all the sequence detection algorithms, during
testing, sample data sequences of the 120 bits are treated as an in-
coming data stream, and the detector estimates the bits one-by-one,
simulating a real communication scenario.

We have trained each network using different number of bins B
to find the best value for each network. For the Base-Net B = 9, for
the CNN-Net B = 30 and for all networks where the first layer is an
LSTM or a BLSTM cell B = 8. Note that during the training, for
all deep learning detectors, the data from all symbol durations are
used to train a single network, which can then perform detection on
all symbol durations.

Table 1 summarizes the best BER performance we obtain for
all detection algorithms, including the baseline algorithm, by tun-
ing all the hyper parameters using grid search. The number in front
of the sequence detectors, indicates the sequence length. For ex-
ample, LSTM3-Net120 is an LSTM3-Net that is trained on 120 bit
sequences. In general, algorithms that use sequence detection per-
form significantly better than any symbol-by-symbol detection algo-
rithm including the baseline algorithm. This is due to significant ISI
present in chemical communication systems. Overall, the proposed
SBLSTM algorithm performs better than all other NN detectors con-
sidered. Note that BER values below 5⇥10�3 are not very accurate
since the number of errors in the test dataset are less than 10, and
more errors would be required for a better estimation of BER.

To demonstrate the practicality of the proposed scheme, we im-
plement the trained deep learning detectors as part of a text mes-
saging service on the platform1. The text message could be of any
length, and we are able to reliably transmit and receive messages at
2 bps. This data rate is an order of magnitude higher than previous
systems [17, 18].

6. CONCLUSIONS
We used several deep learning architectures for building detectors
for communication systems. Different architectures were considered
for symbol-by-symbol detection as well as sequence detection. We
also proposed a new sequence detection scheme called sliding bidi-
rectional recurrent network (SBRNN). These algorithms could be
used in systems where the underlying physical models of the chan-
nel are unknown or inaccurate. We use an experimental platform that
simulates in-vessel chemical communication to collect experimental
data for training and testing deep learning algorithms. We show that
deep learning sequence detectors can improve the detection perfor-
mance significantly compared to a baseline approach used in previ-
ous works [17, 18]. Moreover, in a journal extension of this work, we
use a Poisson channel model for molecular communication systems
with none-reactive chemicals, to show that the performance of the
proposed SBRNN detector can be close to an optimal Viterbi detec-
tor in low noise environments. We also demonstrate that SBRNN is
resilient to changing channel conditions and can perform detection
without channel state information. These demonstrate the promis-
ing performance deep learning detection algorithms could have in
designing some of the future communication systems.

1A video of this text messaging service and the deep learning detector de-
tecting the bits in real-time can be viewed at http://narimanfarsad.
com/pH-setup.mp4.
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